skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Firgard, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 29P/Schwassmann–Wachmann 1 (SW1) is both the first-discovered active Centaur and the most outburst-prone comet known. The nature of SW1’s many outbursts, which regularly brighten the comet by 5 mag or more, and what processes power them has been of particular interest since SW1’s discovery in the 1920s. In this paper, we present and model four epochs of low-resolution near-infrared spectroscopy of SW1 taken with the NASA Infrared Telescope Facility and Lowell Discovery Telescope between 2017 and 2022. This data set includes one large outburst, two periods of low activity (“quiescence” or “quiescent activity”), and one midsized outburst a few days after one of the quiescent observations. The two quiescent epochs appear similar in both spectral slope and modeled grain size distributions, but the two outbursts are significantly different. We propose that the two can be reconciled if smaller dust grains are accelerated more than larger ones, such that observations closer to the onset of an outburst are more sensitive to the finer-grained dust on the outside of the expanding cloud of material. These outbursts can thus appear very rapid, but there is still a period where the dust and gas are well coupled. We find no strong evidence of water-ice absorption features in any of our spectra, suggesting that the areal abundance of ice-dominated grains is less than 1%. We conclude with a discussion of future modeling and monitoring efforts that might be able to further advance our understanding of this object’s complicated activity patterns. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. ABSTRACT We present our findings on the spectral analysis of seven magnetic white dwarfs that were presumed to be double degenerates. We obtained time-resolved spectroscopy at the Gemini Observatory to look for evidence of binarity or fast rotation. We find three of our targets have rotation periods of less than an hour based on the shifting positions of the Zeeman-split H α components: 13, 35, and 39 min, and we find one more target with a approximately an hour long period that is currently unconstrained. We use offset dipole models to determine the inclination, magnetic field strength, and dipole offset of each target. The average surface field strengths of our fast rotators vary by 1–2 MG between different spectra. In all cases, the observed absorption features are too shallow compared to our models. This could be due to extra flux from a companion for our three low-mass targets, but the majority of our sample likely requires an inhomogeneous surface composition. Including an additional magnetic white dwarf with similar properties presented in the literature, we find that five of the eight targets in this sample show field variations on minute/hour time-scales. A crystallization driven dynamo can potentially explain the magnetic fields in three of our targets with masses above 0.7 M⊙, but another mechanism is still needed to explain their rapid rotation. We suggest that rapid rotation or low-masses point to binary evolution as the likely source of magnetism in seven of these eight targets. 
    more » « less